Beschreibung
Die vorliegende Arbeit untersucht die Wirkungsgradpotenziale zylinderselektiver Ventilsteuerungen am Beispiel eines Vierzylinder-Viertakt-Ottomotors. Der hierfür erforderliche vollvariable Ventiltrieb wurde durch eine nockenwellenlose, elektrohydraulische Ventilaktorik umgesetzt. Bedeutender Bestandteil der Analysen sind die kinetisch-kinematischen sowie die energetischen Charakterisierungen des entwickelten Ventiltriebs sowie messtechnische Untersuchungen am Motorenprüfstand. Diese bilden im Hinblick auf Randbedingungen und Modellabgleich die Basis für ein 1D-Simulationsmodell, in welchem nachfolgend innovative zylinderindividuelle Ventilsteuerungsstrategien umgesetzt werden. Kernstück der Innovation ist dabei die Kombination aus Zylinderabschaltung, Laststeuerung durch Einlassventilsteuerzeiten (frühes Einlass schließen) und Entdrosselung mithilfe von Restgasrückführung durch die deaktivierten Zylinder. Zusätzlich werden ausgewählte Teilprobleme der Motorprozesssimulation (wie z.B. Mischungsprobleme) anforderungsbedingt mithilfe von CFD-Simulationen untersucht und optimiert. Außerdem wurde eine quantitative Bewertungsgröße für zeitbasierte, nockenwellenlose Ventilsteuerungen entwickelt: der Ladungswechselpotenzialquotient. Die Größe ermöglicht die Charakterisierung von Betriebsparametern vollvariabler Ventilsteuerungen und kann die Leistungsfähigkeit von Ventilsteuerungskonzepten quantitativ vergleichen.