Beschreibung
Über die besondere Bedeutung von Analogiebildungsprozessen beim Lernen im Allgemeinen und beim Lernen von Mathematik im Speziellen besteht ein breiter wissenschaftlicher Konsens. Es liegt deshalb nahe, von einem lernförderlichen Mathematikunterricht zu verlangen, dass er im Bewusstsein dieser Bedeutung entwickelt ist – dass er also einerseits Analogien aufzeigt und sich diese beim Lehren von Mathematik zunutze macht, dass er andererseits aber auch dem Lernenden Gelegenheiten bietet, Analogien zu erkennen und zu entwickeln.
Kurz: Die Fähigkeit zum Bilden von Analogien soll durch den Unterricht gezielt gefördert werden.
Um diesem Anspruch gerecht werden zu können, müssen ausreichende Kenntnisse darüber vorliegen, wie Analogiebildungsprozesse beim Lernen von Mathematik und beim Lösen mathematischer Aufgaben ablaufen, wodurch sich erfolgreiche Analogiebildungsprozesse auszeichnen und an welchen Stellen möglicherweise Schwierigkeiten bestehen.
Der Autor zeigt auf, wie Prozesse der Analogiebildung beim Lösen mathematischer Aufgaben initiiert, beobachtet, beschrieben und interpretiert werden können, um auf dieser Grundlage Ansatzpunkte für geeignete Fördermaßnahmen zu identifizieren, bestehende Ideen zur Förderung der Analogiebildungsfähigkeit zu beurteilen und neue Ideen zu entwickeln. Es werden dabei Wege der Analogiebildung nachgezeichnet und untersucht, die auf der Verschränkung zweier Dimensionen der Analogiebildung im Rahmen des zugrundeliegenden theoretischen Modells beruhen. So können verschiedene Vorgehensweisen ebenso kontrastiert werden, wie kritische Punkte im Verlauf eines Analogiebildungsprozesses. Es ergeben sich daraus Unterrichtsvorschläge, die auf den Ideen zum beispielbasierten Lernen aufbauen.