0

Radar Array Processing

Springer Series in Information Sciences 25

Litva, John / J Shepherd, Terence
Erschienen am 01.12.2011, Auflage: 1. Auflage
CHF 129,00
(inkl. MwSt.)
UVP

Lieferbar in ca. 10-14 Arbeitstagen

In den Warenkorb
Bibliografische Daten
ISBN/EAN: 9783642773495
Sprache: Englisch

Beschreibung

Inhaltsangabe1. Overview.- I Detection and Estimation.- 2. Radar Detection Using Array Processing.- 2.1 Observation Model.- 2.2 Coherent Radar Detection.- 2.2.1 Signal and Noise Model.- 2.2.2 Detection of Targets with Known Directions.- 2.2.3 Detection of Targets with Unknown Directions.- 2.3 Noncoherent Radar Detection.- 2.3.1 Signal and Noise Model.- 2.3.2 Detection of Targets with Known Directions.- 2.3.3 Detection of Targets with Unknown Directions: Deterministic Signal.- 2.3.4 Detection of Targets with Unknown Directions: Gaussian Signal.- 2.4 Passive Radar Detection.- 2.4.1 Signal and Noise Model.- 2.4.2 Detection of Emitters with Known Directions.- 2.4.3 Detection of Emitters with Unknown Directions: Deterministic Signal.- 2.4.4 Detection of Emitters with Unknown Directions: Gaussian Signal.- 2.5 Discussion.- References.- Additional References.- 3. Radar Target Parameter Estimation with Array Antennas.- 3.1 Radar Parameter Estimation Problem.- 3.1.1 Range and Angle Estimation.- 3.1.2 Frequency and Power Estimation.- 3.2 Angle Estimation.- 3.2.1 Monopulse Estimation (Single Target Estimation).- 3.2.2 Covariance Matrix Estimation.- 3.2.3 Linear Prediction Methods.- 3.2.4 Capon-Pisarenko-Type Methods.- 3.2.5 Signal Subspace Methods.- 3.2.6 Parametric Target Model Fitting.- 3.2.7 Aspects of Implementation.- 3.3 Frequency Estimation.- 3.3.1 Doppler Filter Bank.- 3.3.2 Superresolution Methods.- 3.4 Range, Amplitude and Power Estimation.- 3.4.1 Conventional Range Estimation.- 3.4.2 Superresolution in Range.- 3.4.3 Amplitude and Power Estimation.- 3.5 Summary.- References.- 4. Exact and Large Sample Maximum Likelihood Techniques for Parameter Estimation and Detection in Array Processing.- 4.1 Background.- 4.2 Chapter Outline.- 4.3 Sensor Array Processing.- 4.3.1 Narrowband Data Model.- 4.3.2 Parametric Data Model.- 4.3.3 Assumptions and Problem Formulation.- 4.3.4 Parameter Identifiability.- 4.4 Exact Maximum Likelihood Estimation.- 4.4.1 Stochastic Maximum Likelihood Method.- 4.4.2 Deterministic Maximum Likelihood Method.- 4.4.3 Bounds of Estimation Accuracy.- 4.4.4 Asymptotic Properties of Maximum Likelihood Estimates.- 4.4.5 Order Relations.- 4.5 Large Sample Maximum Likelihood Approximations.- 4.5.1 Subspace Based Approach.- 4.5.2 Relation Between Subspace Formulations.- 4.5.3 Relation to Maximum Likelihood Estimation.- 4.6 Calculating the Estimates.- 4.6.1 Newton-Type Search Algorithms.- 4.6.2 Gradients and Approximate Hessians.- 4.6.3 Uniform Linear Arrays.- 4.6.4 Practical Aspects.- 4.7 Detection of Coherent/Noncoherent Signals.- 4.7.1 Generalized Likelihood Ratio Test Based Detection.- 4.7.2 Subspace Based Detection.- 4.8 Numerical Examples and Simulations.- 4.9 Conclusions.- Appendix 4.A Differentiation of the Projection Matrix.- Appendix 4.B Asymptotic Distribution of the Weighted Subspace Fitting Criterion.- References.- II Systolic Arrays.- 5. Systolic Adaptive Beamforming.- 5.1 Adaptive Antenna Arrays.- 5.2 Systolic and Wavefront Arrays.- 5.3 Canonical Problem.- 5.3.1 Canonical Configuration.- 5.3.2 Least-Squares Formulation.- 5.4 QR Decomposition by Givens Rotations.- 5.4.1 QR Decomposition.- 5.4.2 Givens Rotations.- 5.4.3 Systolic Array Implementation.- 5.4.4 Square-Root-Free Algorithm.- 5.4.5 Sensitivity to Arithmetic Precision.- 5.5 Direct Residual Extraction.- 5.5.1 Definition of Residuals.- 5.5.2 Properties of Rotation Matrix Q?(n).- 5.5.3 A Posteriori Residual Extraction.- 5.5.4 A Priori Residual Extraction.- 5.6 Weight Freezing and Flushing.- 5.6.1 Basic Concept.- 5.6.2 Frozen Networks.- 5.6.3 Serial Weight Flushing.- 5.6.4 Further Insights.- 5.7 Linear Constraint Pre-Processor.- 5.7.1 Single Constraint Pre-Processor.- 5.7.2 Multiple Constraint Pre-Processor.- 5.7.3 Generalized Sidelobe Canceller.- 5.8 Minimum Variance Distortionless Response Beamforming.- 5.8.1 Schreiber's Algorithm.- 5.8.2 SystoUc Array Implementation.- 5.8.3 Square-Root-Free Minimum Variance Distortionless Response Algorithm.- 5.9 Adaptive Antenna Pr

Weitere Artikel aus der Kategorie "Technik"

Lieferbar innerhalb 48 Stunden

CHF 28,90
inkl. MwSt.
UVP

Lieferbar innerhalb 48 Stunden

CHF 178,00
inkl. MwSt.
UVP

Lieferbar innerhalb 48 Stunden

CHF 47,30
inkl. MwSt.
UVP

Lieferzeit unbestimmt

CHF 93,40
inkl. MwSt.
UVP

Lieferbar innerhalb 48 Stunden

CHF 57,90
inkl. MwSt.
UVP

Lieferbarkeit auf Anfrage

CHF 71,00
inkl. MwSt.
UVP
Alle Artikel anzeigen