Cytomechanics
The Mechanical Basis of Cell Form and Structure
Roger Anderson, O / Reif, Wolf-Ernst
Erschienen am
01.01.2012
Beschreibung
InhaltsangabeI. General Principles.- I.1 Mechanical Principles of Architecture of Eukaryotic Cells.- 1.1 Introduction.- 1.2 Basic Mechanical Parameters of Cells.- 1.3 Cellular Viscosity.- 1.4 Elasticity, Contractile Forces, and Surface Tension.- 1.5 The Structural Basis of Cell Mechanics.- 1.5.1 Actin and Actin-Based Structures.- 1.5.2 Membrane-Associated Actin Fibrils.- 1.5.3 Microtubules and Related Structures.- 1.5.4 Intermediate Filaments and Related Structures.- 1.6 Aspects of Cytoplasmic Architecture.- 1.6.1 Localization of Organelles.- 1.6.2 Interaction of Cytoskeletal Elements in Generating Cell Shape.- 1.6.3 Cytoplasmic Streaming.- 1.7 Physiological Effects of Mechanical Stresses.- 1.7.1 Mechanical Aspects of Morphogenesis During Embryo Development.- 1.7.2 Influences of Mechanical Stresses on Cellular Metabolism.- References.- I.2 Evaluation of Cytomechanical Properties.- 2.1 Introduction.- 2.2 Physical Structure of the Cell.- 2.3 Mechanical Properties of the Cell Surface.- 2.3.1 Relationship Between the Surface Force and the Internal Pressure of the Cell.- 2.3.2 Direct Measurement of the Internal Pressure.- 2.3.3 Indirect Measurements of the Surface Force and the Internal Pressure.- 2.3.3.1 Compression Method.- 2.3.3.2 Suction Method.- 2.3.3.3 Stretching Method.- 2.3.3.4 Sessile Drop Method.- 2.3.4 Elasticity and Viscoelasticity of the Cell Surface.- 2.4 Mechanical Properties of the Endoplasm.- 2.4.1 Measurements of Mechanical Properties of the Endoplasm.- 2.4.1.1 Centrifuge Method.- 2.4.1.2 Magnetic Particle Method.- 2.4.1.3 Capillary Method.- 2.4.1.4 Brownian Movement Method.- 2.4.1.5 Diffusion Method.- 2.4.2 Relationship Between the Mechanical Properties and Submicroscopic Structure of the Endoplasm.- References.- I.3 Use of Finite Element Methods in Cytomechanics: Study of the Mechanical Stability of the Skeletal Basal Plate of Callimitra a Biomineralizing Protozoan.- 3.1 Introduction.- 3.2 Callimitra Architecture.- 3.3 Finite Element Approach.- 3.4 Further Applications of FEM and Their Implications.- References.- I.4 Mechanics and Hydrodynamics of Rotating Filaments.- 4.1 The Molecular Basis of Filament Rotation.- 4.2 Longitudinal (Screw-Mechanical) Effects.- 4.2.1 Waving and Screwing.- 4.2.2 The Oscillation.- 4.2.3 Control of Polymerization and Depolymerization.- 4.2.4 The Translocation of Particles.- 4.2.5 Crossbridges.- 4.3 Lateral (Hydrodynamic) Effects.- 4.3.1 Pattern of Flows.- 4.3.2 Flows Adjacent to a Wall.- 4.3.3 Flows and Molding of an Adjacent Liquid Surface.- 4.3.4 Rolling Motions and Self-Arrangements.- References.- II. The Supramolecular Level.- II.1 Mechanical Concepts of Membrane Dynamics: Diffusion and Phase Separation in Two Dimensions.- 1.1 Introduction.- 1.2 Translational Diffusion in Fluid Phase Membranes.- 1.2.1 Net Transport by Diffusion: The Einstein-Smoluchowski Equation.- 1.2.2 Diffusion Modeled as a Stochastic Random Walk: The Free Volume Model.- 1.2.3 Diffusion Modeled by Continuum Hydromechanics: The Saffman-Delbrück Model.- 1.2.4 Diffusion in Biological Membranes.- 1.3 Fluid-Solid Phase Separation in Two Dimensions.- 1.3.1 Effective Medium and Percolation Theory.- 1.3.2 Phase Separation in Lipid Monolayers.- 1.3.3 Phase Separation in Biological Membranes.- 1.4 Concluding Comments.- References.- II.2 Implications of Microtubules in Cytomechanics: Static and Motile Aspects.- 2.1 Microtubule Structure: Statics and Elasticity.- 2.1.1 Substructure of Microtubules.- 2.1.2 Rigidity of Microtubules.- 2.1.3 Integration of Microtubules into the Cytoskeleton.- 2.2 Microtubule-Associated Dynamics: Motion and Tension.- 2.2.1 Elongation of Microtubules.- 2.2.2 Shortening of Microtubules.- 2.2.3 Treadmilling of Microtubules.- 2.2.4 Organelle Movement Along Microtubules.- 2.2.5 Gliding of Microtubules.- 2.2.6 Sliding of Microtubules.- 2.2.7 Movement of Axostyle Microtubules.- 2.2.8 Complex Interactions of Microtubules.- 2.2.9 Contraction of Microtubule Arrays.- 2.3 Conclusions.- References.- II.3 The Nature and
Autorenportrait
InhaltsangabeI. General Principles.- I.1 Mechanical Principles of Architecture of Eukaryotic Cells.- 1.1 Introduction.- 1.2 Basic Mechanical Parameters of Cells.- 1.3 Cellular Viscosity.- 1.4 Elasticity, Contractile Forces, and Surface Tension.- 1.5 The Structural Basis of Cell Mechanics.- 1.5.1 Actin and Actin-Based Structures.- 1.5.2 Membrane-Associated Actin Fibrils.- 1.5.3 Microtubules and Related Structures.- 1.5.4 Intermediate Filaments and Related Structures.- 1.6 Aspects of Cytoplasmic Architecture.- 1.6.1 Localization of Organelles.- 1.6.2 Interaction of Cytoskeletal Elements in Generating Cell Shape.- 1.6.3 Cytoplasmic Streaming.- 1.7 Physiological Effects of Mechanical Stresses.- 1.7.1 Mechanical Aspects of Morphogenesis During Embryo Development.- 1.7.2 Influences of Mechanical Stresses on Cellular Metabolism.- References.- I.2 Evaluation of Cytomechanical Properties.- 2.1 Introduction.- 2.2 Physical Structure of the Cell.- 2.3 Mechanical Properties of the Cell Surface.- 2.3.1 Relationship Between the Surface Force and the Internal Pressure of the Cell.- 2.3.2 Direct Measurement of the Internal Pressure.- 2.3.3 Indirect Measurements of the Surface Force and the Internal Pressure.- 2.3.3.1 Compression Method.- 2.3.3.2 Suction Method.- 2.3.3.3 Stretching Method.- 2.3.3.4 Sessile Drop Method.- 2.3.4 Elasticity and Viscoelasticity of the Cell Surface.- 2.4 Mechanical Properties of the Endoplasm.- 2.4.1 Measurements of Mechanical Properties of the Endoplasm.- 2.4.1.1 Centrifuge Method.- 2.4.1.2 Magnetic Particle Method.- 2.4.1.3 Capillary Method.- 2.4.1.4 Brownian Movement Method.- 2.4.1.5 Diffusion Method.- 2.4.2 Relationship Between the Mechanical Properties and Submicroscopic Structure of the Endoplasm.- References.- I.3 Use of Finite Element Methods in Cytomechanics: Study of the Mechanical Stability of the Skeletal Basal Plate of Callimitra a Biomineralizing Protozoan.- 3.1 Introduction.- 3.2 Callimitra Architecture.- 3.3 Finite Element Approach.- 3.4 Further Applications of FEM and Their Implications.- References.- I.4 Mechanics and Hydrodynamics of Rotating Filaments.- 4.1 The Molecular Basis of Filament Rotation.- 4.2 Longitudinal (Screw-Mechanical) Effects.- 4.2.1 Waving and Screwing.- 4.2.2 The Oscillation.- 4.2.3 Control of Polymerization and Depolymerization.- 4.2.4 The Translocation of Particles.- 4.2.5 Crossbridges.- 4.3 Lateral (Hydrodynamic) Effects.- 4.3.1 Pattern of Flows.- 4.3.2 Flows Adjacent to a Wall.- 4.3.3 Flows and Molding of an Adjacent Liquid Surface.- 4.3.4 Rolling Motions and Self-Arrangements.- References.- II. The Supramolecular Level.- II.1 Mechanical Concepts of Membrane Dynamics: Diffusion and Phase Separation in Two Dimensions.- 1.1 Introduction.- 1.2 Translational Diffusion in Fluid Phase Membranes.- 1.2.1 Net Transport by Diffusion: The Einstein-Smoluchowski Equation.- 1.2.2 Diffusion Modeled as a Stochastic Random Walk: The Free Volume Model.- 1.2.3 Diffusion Modeled by Continuum Hydromechanics: The Saffman-Delbrück Model.- 1.2.4 Diffusion in Biological Membranes.- 1.3 Fluid-Solid Phase Separation in Two Dimensions.- 1.3.1 Effective Medium and Percolation Theory.- 1.3.2 Phase Separation in Lipid Monolayers.- 1.3.3 Phase Separation in Biological Membranes.- 1.4 Concluding Comments.- References.- II.2 Implications of Microtubules in Cytomechanics: Static and Motile Aspects.- 2.1 Microtubule Structure: Statics and Elasticity.- 2.1.1 Substructure of Microtubules.- 2.1.2 Rigidity of Microtubules.- 2.1.3 Integration of Microtubules into the Cytoskeleton.- 2.2 Microtubule-Associated Dynamics: Motion and Tension.- 2.2.1 Elongation of Microtubules.- 2.2.2 Shortening of Microtubules.- 2.2.3 Treadmilling of Microtubules.- 2.2.4 Organelle Movement Along Microtubules.- 2.2.5 Gliding of Microtubules.- 2.2.6 Sliding of Microtubules.- 2.2.7 Movement of Axostyle Microtubules.- 2.2.8 Complex Interactions of Microtubules.- 2.2.9 Contraction of Microtubule Arrays.- 2.3 Conclusions.- References.- II.3 The Nature and