0

Cytomechanics

The Mechanical Basis of Cell Form and Structure

Roger Anderson, O / Reif, Wolf-Ernst
Erschienen am 01.01.2012
CHF 128,00
(inkl. MwSt.)
UVP

Lieferbar in ca. 10-14 Arbeitstagen

In den Warenkorb
Bibliografische Daten
ISBN/EAN: 9783642728655
Sprache: Englisch
Auflage: 1. Auflage

Beschreibung

InhaltsangabeI. General Principles.- I.1 Mechanical Principles of Architecture of Eukaryotic Cells.- 1.1 Introduction.- 1.2 Basic Mechanical Parameters of Cells.- 1.3 Cellular Viscosity.- 1.4 Elasticity, Contractile Forces, and Surface Tension.- 1.5 The Structural Basis of Cell Mechanics.- 1.5.1 Actin and Actin-Based Structures.- 1.5.2 Membrane-Associated Actin Fibrils.- 1.5.3 Microtubules and Related Structures.- 1.5.4 Intermediate Filaments and Related Structures.- 1.6 Aspects of Cytoplasmic Architecture.- 1.6.1 Localization of Organelles.- 1.6.2 Interaction of Cytoskeletal Elements in Generating Cell Shape.- 1.6.3 Cytoplasmic Streaming.- 1.7 Physiological Effects of Mechanical Stresses.- 1.7.1 Mechanical Aspects of Morphogenesis During Embryo Development.- 1.7.2 Influences of Mechanical Stresses on Cellular Metabolism.- References.- I.2 Evaluation of Cytomechanical Properties.- 2.1 Introduction.- 2.2 Physical Structure of the Cell.- 2.3 Mechanical Properties of the Cell Surface.- 2.3.1 Relationship Between the Surface Force and the Internal Pressure of the Cell.- 2.3.2 Direct Measurement of the Internal Pressure.- 2.3.3 Indirect Measurements of the Surface Force and the Internal Pressure.- 2.3.3.1 Compression Method.- 2.3.3.2 Suction Method.- 2.3.3.3 Stretching Method.- 2.3.3.4 Sessile Drop Method.- 2.3.4 Elasticity and Viscoelasticity of the Cell Surface.- 2.4 Mechanical Properties of the Endoplasm.- 2.4.1 Measurements of Mechanical Properties of the Endoplasm.- 2.4.1.1 Centrifuge Method.- 2.4.1.2 Magnetic Particle Method.- 2.4.1.3 Capillary Method.- 2.4.1.4 Brownian Movement Method.- 2.4.1.5 Diffusion Method.- 2.4.2 Relationship Between the Mechanical Properties and Submicroscopic Structure of the Endoplasm.- References.- I.3 Use of Finite Element Methods in Cytomechanics: Study of the Mechanical Stability of the Skeletal Basal Plate of Callimitra a Biomineralizing Protozoan.- 3.1 Introduction.- 3.2 Callimitra Architecture.- 3.3 Finite Element Approach.- 3.4 Further Applications of FEM and Their Implications.- References.- I.4 Mechanics and Hydrodynamics of Rotating Filaments.- 4.1 The Molecular Basis of Filament Rotation.- 4.2 Longitudinal (Screw-Mechanical) Effects.- 4.2.1 Waving and Screwing.- 4.2.2 The Oscillation.- 4.2.3 Control of Polymerization and Depolymerization.- 4.2.4 The Translocation of Particles.- 4.2.5 Crossbridges.- 4.3 Lateral (Hydrodynamic) Effects.- 4.3.1 Pattern of Flows.- 4.3.2 Flows Adjacent to a Wall.- 4.3.3 Flows and Molding of an Adjacent Liquid Surface.- 4.3.4 Rolling Motions and Self-Arrangements.- References.- II. The Supramolecular Level.- II.1 Mechanical Concepts of Membrane Dynamics: Diffusion and Phase Separation in Two Dimensions.- 1.1 Introduction.- 1.2 Translational Diffusion in Fluid Phase Membranes.- 1.2.1 Net Transport by Diffusion: The Einstein-Smoluchowski Equation.- 1.2.2 Diffusion Modeled as a Stochastic Random Walk: The Free Volume Model.- 1.2.3 Diffusion Modeled by Continuum Hydromechanics: The Saffman-Delbrück Model.- 1.2.4 Diffusion in Biological Membranes.- 1.3 Fluid-Solid Phase Separation in Two Dimensions.- 1.3.1 Effective Medium and Percolation Theory.- 1.3.2 Phase Separation in Lipid Monolayers.- 1.3.3 Phase Separation in Biological Membranes.- 1.4 Concluding Comments.- References.- II.2 Implications of Microtubules in Cytomechanics: Static and Motile Aspects.- 2.1 Microtubule Structure: Statics and Elasticity.- 2.1.1 Substructure of Microtubules.- 2.1.2 Rigidity of Microtubules.- 2.1.3 Integration of Microtubules into the Cytoskeleton.- 2.2 Microtubule-Associated Dynamics: Motion and Tension.- 2.2.1 Elongation of Microtubules.- 2.2.2 Shortening of Microtubules.- 2.2.3 Treadmilling of Microtubules.- 2.2.4 Organelle Movement Along Microtubules.- 2.2.5 Gliding of Microtubules.- 2.2.6 Sliding of Microtubules.- 2.2.7 Movement of Axostyle Microtubules.- 2.2.8 Complex Interactions of Microtubules.- 2.2.9 Contraction of Microtubule Arrays.- 2.3 Conclusions.- References.- II.3 The Nature and

Autorenportrait

InhaltsangabeI. General Principles.- I.1 Mechanical Principles of Architecture of Eukaryotic Cells.- 1.1 Introduction.- 1.2 Basic Mechanical Parameters of Cells.- 1.3 Cellular Viscosity.- 1.4 Elasticity, Contractile Forces, and Surface Tension.- 1.5 The Structural Basis of Cell Mechanics.- 1.5.1 Actin and Actin-Based Structures.- 1.5.2 Membrane-Associated Actin Fibrils.- 1.5.3 Microtubules and Related Structures.- 1.5.4 Intermediate Filaments and Related Structures.- 1.6 Aspects of Cytoplasmic Architecture.- 1.6.1 Localization of Organelles.- 1.6.2 Interaction of Cytoskeletal Elements in Generating Cell Shape.- 1.6.3 Cytoplasmic Streaming.- 1.7 Physiological Effects of Mechanical Stresses.- 1.7.1 Mechanical Aspects of Morphogenesis During Embryo Development.- 1.7.2 Influences of Mechanical Stresses on Cellular Metabolism.- References.- I.2 Evaluation of Cytomechanical Properties.- 2.1 Introduction.- 2.2 Physical Structure of the Cell.- 2.3 Mechanical Properties of the Cell Surface.- 2.3.1 Relationship Between the Surface Force and the Internal Pressure of the Cell.- 2.3.2 Direct Measurement of the Internal Pressure.- 2.3.3 Indirect Measurements of the Surface Force and the Internal Pressure.- 2.3.3.1 Compression Method.- 2.3.3.2 Suction Method.- 2.3.3.3 Stretching Method.- 2.3.3.4 Sessile Drop Method.- 2.3.4 Elasticity and Viscoelasticity of the Cell Surface.- 2.4 Mechanical Properties of the Endoplasm.- 2.4.1 Measurements of Mechanical Properties of the Endoplasm.- 2.4.1.1 Centrifuge Method.- 2.4.1.2 Magnetic Particle Method.- 2.4.1.3 Capillary Method.- 2.4.1.4 Brownian Movement Method.- 2.4.1.5 Diffusion Method.- 2.4.2 Relationship Between the Mechanical Properties and Submicroscopic Structure of the Endoplasm.- References.- I.3 Use of Finite Element Methods in Cytomechanics: Study of the Mechanical Stability of the Skeletal Basal Plate of Callimitra a Biomineralizing Protozoan.- 3.1 Introduction.- 3.2 Callimitra Architecture.- 3.3 Finite Element Approach.- 3.4 Further Applications of FEM and Their Implications.- References.- I.4 Mechanics and Hydrodynamics of Rotating Filaments.- 4.1 The Molecular Basis of Filament Rotation.- 4.2 Longitudinal (Screw-Mechanical) Effects.- 4.2.1 Waving and Screwing.- 4.2.2 The Oscillation.- 4.2.3 Control of Polymerization and Depolymerization.- 4.2.4 The Translocation of Particles.- 4.2.5 Crossbridges.- 4.3 Lateral (Hydrodynamic) Effects.- 4.3.1 Pattern of Flows.- 4.3.2 Flows Adjacent to a Wall.- 4.3.3 Flows and Molding of an Adjacent Liquid Surface.- 4.3.4 Rolling Motions and Self-Arrangements.- References.- II. The Supramolecular Level.- II.1 Mechanical Concepts of Membrane Dynamics: Diffusion and Phase Separation in Two Dimensions.- 1.1 Introduction.- 1.2 Translational Diffusion in Fluid Phase Membranes.- 1.2.1 Net Transport by Diffusion: The Einstein-Smoluchowski Equation.- 1.2.2 Diffusion Modeled as a Stochastic Random Walk: The Free Volume Model.- 1.2.3 Diffusion Modeled by Continuum Hydromechanics: The Saffman-Delbrück Model.- 1.2.4 Diffusion in Biological Membranes.- 1.3 Fluid-Solid Phase Separation in Two Dimensions.- 1.3.1 Effective Medium and Percolation Theory.- 1.3.2 Phase Separation in Lipid Monolayers.- 1.3.3 Phase Separation in Biological Membranes.- 1.4 Concluding Comments.- References.- II.2 Implications of Microtubules in Cytomechanics: Static and Motile Aspects.- 2.1 Microtubule Structure: Statics and Elasticity.- 2.1.1 Substructure of Microtubules.- 2.1.2 Rigidity of Microtubules.- 2.1.3 Integration of Microtubules into the Cytoskeleton.- 2.2 Microtubule-Associated Dynamics: Motion and Tension.- 2.2.1 Elongation of Microtubules.- 2.2.2 Shortening of Microtubules.- 2.2.3 Treadmilling of Microtubules.- 2.2.4 Organelle Movement Along Microtubules.- 2.2.5 Gliding of Microtubules.- 2.2.6 Sliding of Microtubules.- 2.2.7 Movement of Axostyle Microtubules.- 2.2.8 Complex Interactions of Microtubules.- 2.2.9 Contraction of Microtubule Arrays.- 2.3 Conclusions.- References.- II.3 The Nature and

Weitere Artikel aus der Kategorie "Biologie"

Lieferbar innerhalb 36 Stunden

CHF 26,80
inkl. MwSt.
UVP

Lieferbar innerhalb 36 Stunden

CHF 20,90
inkl. MwSt.
UVP

Lieferbarkeit auf Anfrage

CHF 30,50
inkl. MwSt.
UVP

Lieferbar innerhalb 36 Stunden

CHF 43,90
inkl. MwSt.
UVP

Lieferbarkeit auf Anfrage

CHF 42,50
inkl. MwSt.
UVP

Titel noch nicht erschienen

CHF 27,90
inkl. MwSt.
UVP
Alle Artikel anzeigen