Beschreibung
Inhaltsangabe1. Evolution of Quantum Theory.- 1.1 Classical Pictures of Reality.- 1.1.1 Mythological and Intellectual Pictures.- 1.1.2 Mechanistic View of the World.- 1.2 From Classical to Quantum Mechanics.- 1.2.1 Planck's Constant.- 1.2.2 Einstein's Picture of Light.- 1.2.3 The Structure of Atoms.- 1.2.4 Matter Waves, Schrödinger's Wave Equation, and Matrix Mechanics.- 1.2.5 Bora's Probability Interpretation.- 1.2.6 Uncertainty.- 1.2.7 The Principle of Complementarity.- 1.3 Theories of Measurement: Brief Remarks.- 1.3.1 Objectivity.- 1.3.2 The Measurement Problem.- 1.3.3 Theories of Measurement: Final Comments.- 1.4 Summary.- Appendix 1.A. Classical Mechanics: Some Basic Remarks.- 1.A.1 The Principle of Least Action and Lagrange's Equations.- 1.A.2 Newton's Equations.- 1.A.3 Hamilton's Equations.- 1.A.4 The Hamilton-Jacobi Equations.- Appendix 1.B. The Relation Between Schrödinger's Equations and Classical Mechanics.- References.- 2. The EPR Paradox. Roots and Ramifications.- 2.1 A Debate Lasting More Than Fifty Years.- 2.1.1 Are There Faster-Than-Light Effects in Quantum Phenomena?.- 2.1.2 Einstein's Point of View.- 2.1.3 Dissenting Voices.- 2.1.4 The Verdict of Experiment.- 2.2 A Far-Reaching Argument.- 2.2.1 Example of an EPR-Bohm Experiment.- 2.2.2 How to Compute the Predictions in Quantum Theory.- 2.2.3 Reality and Lorentz Invariance.- 2.2.4 Bell's Theorem.- 2.2.5 Analogy with a Spy Story.- 2.3 A Sample of Possible Solutions.- 2.3.1 Experimental Loopholes.- 2.3.2 Giving up on Conventional Concepts of Reality.- 2.3.3 Fundamental Space-Time Restframes.- 2.3.4 How a Model with Rudimentary Locality Can Work.- 2.3.5 Conclusions.- References.- 3. Nonseparability and the Tentative Descriptions of Reality.- 3.1 Introduction.- 3.2 Realism and Separability.- 3.2.1 Realism.- 3.2.2 The Principle of Separability.- 3.2.3 Separable "Conception of the World".- 3.3 Separability and Quantum Physics.- 3.3.1 Separability and Quantum State.- 3.3.2 The Usefulness and Scope of the Statistical Operator Description of States.- 3.3.3 How to Prove Nonseparability.- 3.3.4 A Few Words of Caution.- 3.3.5 Quantum Mechanics Does Not Allow Superluminal Signalling.- 3.4 Disproof of the Principle of Separability.- 3.4.1 Derivation of the Bell-CHSH Inequalities.- 3.4.2 Relativity and the Bell-CHSH Inequalities.- 3.4.3 Other Assumptions Leading to the Bell-CHSH Inequalities.- 3.4.4 The Special Case of Strict Correlations.- 3.4.5 The "Principle of Inductive Causality", its Motivation and function.- 3.4.6 The Generality of the Bell Inequalities.- 3.5 Counterfactuals and Influences-at-a-Distance.- 3.5.1 Strict Implication and Counterfactuals.- 3.5.2 A Few Applications for These Concepts.- 3.5.3 An Application to the Everett "Relative State" Theory.- 3.5.4 In What Sense Can We Speak of Superluminal Propagation of Influences?.- 3.5.5 A Nonrelativistic Approach.- 3.5.6 What About the Relativistic Case?.- 3.6 Some Problems Bearing on Causality.- 3.6.1 A Remark on Delayed Choice Experiments.- 3.6.2 Remarks on Relativistic Covarianee and its Meaning.- 3.6.3 On Measurement Time Asymmetry and the Nonexistence of Superluminal Signals.- 3.7 Tentative Descriptions of an "Independent Reality".- 3.7.1 Assumption Q Made.- 3.7.2 Assumption Q Not Made.- 3.8 Conclusion.- Appendix 3.I. Some Disproved Objections to the Bell Theorem.- Added Note.- Appendix 3.II.- References.- 4. A Realistic Model for Quantum Theory With a Locality Property.- 4.1 Introduction.- 4.1.1 Background and Scope.- 4.1.2 Basic Features of the Model.- 4.1.3 Possible Experimental Evidence.- 4.2 Field Theory and Translation-Invariant Operators.- 4.2.1 The Density Matrices for the Universe and for an Isolated Quantum System.- 4.2.2 Measurement Probabilities and Collapses.- 4.2.3 Translation Invariant Operators.- 4.2.4 The Translation-Invariant Formalism.- 4.2.5 Lorentz Invariance.- 4.3 The Model and its Predictions.- 4.3.1 Probabilities of Measurement Results.- 4.3.2 Equations for Time Evolution.- 4.3.3 Collapses of the Q